Exact Dynamics in Feedforward Neural Networks
نویسنده
چکیده
I consider layered neural networks in which the weights are trained by optimizing an arbitrary performance function with respect to a set of examples. Using the cavity method and many-body diagrammatic techniques, the evolution in the network can be described by an overlap and a noise parameter. Parameter pairs corresponding to various input conditions are found to collapse on a universal curve. Simulations with the maximally stable network connrm the theory.
منابع مشابه
Attractor Dynamics in Feedforward Neural Networks
We study the probabilistic generative models parameterized by feedforward neural networks. An attractor dynamics for probabilistic inference in these models is derived from a mean field approximation for large, layered sigmoidal networks. Fixed points of the dynamics correspond to solutions of the mean field equations, which relate the statistics of each unit to those of its Markov blanket. We ...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملExact Hessian Calculation in Feedforward FIR Neural Networks
FIR neural networks are feedforward neural networks with regular scalar synapses replaced by linear finite impulse response filters. This paper introduces the Second Order Temporal Backpropagation algorithm which enables the exact calculation of the second order error derivatives for a FIR neural network. This method is based on the error gradient calculation method first proposed by Wan and re...
متن کاملA Learning Approach of Wafer Temperature Control in a Rapid Thermal Processing System
This paper presents a learning approach for wafer temperature control in a rapid thermal processing system (RTP). RTP is very important for semiconductor processing system and requires an accurate trajectory following. Numerous studies have addressed this problem and most research on this problem requires exact knowledge of the system dynamics. The various approaches do not guarantee the desire...
متن کاملبررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کامل